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Wave functions for the 21S, 31S, and 41S states of helium are calculated using as trial wave 
functions screened hydrogenic orbitals which have the coordinates r< and r> as arguments. 
Direct minimization of the energy expression for each state, without assuming orthogonality 
to any lower state, gives quite reasonable results. In  the case of the 21S state and no other, the 
energy as a function of the variationM parameters exhibits two minima, the deeper of which 
is shown by overlap considerations to correspond to the ground state. Our results are compared 
to those obtained with the Eckart-type screened hydrogenic wave functions. 

21S, 31S, 41S-Zust~nde yon He werden mit Variationsfunktionen berectmet, die aus 
wasserstoffiihnlichen Orbitalen aufgebaut sind, welche als Argumente r< und r> enthalten. Die 
Energieminimisierung wird vorgenommen, ohne Orbhogonalit~t auf den tieferen Zust/~nden 
zu ber/icksichtigen. Nur im Fa]le der 21S-Funktion treten zwei relative Encrgieminima auf, 
yon denen das tiefere dem Grundzustand entsprichK 

Les fonctions d'ondes des 6tats 21S, 31S et 41S de l'h~lium sont calcul6es en utilisant comme 
fonctions variationnelles des orbitales hydrog6noides s constante d'6cran ayant les coordonn6es 
r< et r> comme arguments. Une minimisation directe de 1%nergie pour chaque 6tat, sans 
aucune contrainte d'orthogonalit6 ~ des 6tats d'~nergie inf4rieure, donne des r6sultats raison- 
nables. Dans le cas de 21S seniement, l'6nergie pr6sente deux minima en fonction des para- 
m~tres variationnels; le plus bas des deux correspond, d'apr6s des consid6rations de recouvre- 
ment, b. l'~tat fondamental. Nos r6sultats sont compar6s ~ ceux obtenus avec des fonctions 
d'onde hydrog6noides du type d'Eckart. 

Introduction 

One of the principal  activities of q u a n t u m  chemists in recent  years has been 
to seek simplifications in  methods of calculating wave functions.  Much of this 
effort has been directed at  the ground state of the hel ium atom, where the problem 
is somehow to account  for the correlated motions of the two electrons wi thout  
in t roducing prohibi t ive quant i t ies  of addi t ional  calculation. One of the more 
ingenious suggestions, due to SKVO~TSOVA, SHCGU~OV, and  EaI~GIS [1] is to 
express a tr ial  ground state wave funct ion as 

T(rl, ~) = ~(r<) ~(r>), (~) 

where r> and  r< are the lesser and  greater, respectively, of r 1 and  r 2. Such a func- 
t ion will in t roduce radial  correlation by  allowing the inside electron to have a 
different d is t r ibut ion  t h a n  the outside electron. The idea was first used in  a 
calculat ion by  SNYDE~ and  PApa [2], who approximated  the funct ions ~ and  W as 
screened exponentials  : 
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~0 ~ e - a ~ ' <  

y~ = e -br> . (2) 

The variationally determined parameters are a = 1.8465 and b = 1.5103, which 
give an energy of -2.8727 au, results which were later confirmed by SCHWArtz 
[3]. This energy is considerably more accurate than that  obtained with a screened 
exponential without correlation, 

}[J ~ e -a  (rl + r~) 

(a = i.6875, E = - 2.8476) and is somewhat more accurate even than the Hartree- 
•ock result, -2.8617. I t  is practically as good as the energy obtained by ECKA~T 
[4] who used a screened exponential wave function with radial correlation: 

~ Y  ~ e -  a r l  - br~ .~_ e -  b r l  - a t 2  

(a = 1.1885, b = 2.1832, E = -- 2.8757). The exact nonrelativistic energy of the 
ground state is -2.9037 au. 

Our interest here is in some of the helium excited states which belong to the 
same symmetry classification as the ground state. The problem in calculating the 
energies of such states is to assure the existence of a variational principle which 
guarantees lower bounds on calculated energies appropriate to the states of 
interest. I f  one does not have such a bound, one's calculated energy might be 
seriously in error, and one's wave function might bear no resemblance to the 
(unknown) exact wave function. HYLL]~AAS [5] observed a long time ago that  the 
n TM lowest root of the secular equation is an upper bound to the energy of the n th 
lowest state. ECKA~T [4] and VY~TI [6] orthogonalized excited state wave func- 
tions to approximate lower state wave functions, thus assuring a proper varia- 
tional principle, but at the same time, adding the inaccuracies of the ground state 
wave function to those of the excited state. Various aspects of the problem are 
still under investigation [ 7 - - 9 ] .  

Our own approach is rather direct and springs from our desire to find reliable 
yet simple theoretical methods which do not entail extensive and expensive 
calculations. We use wave functions of the form (l), in which we make ~0 a screened 
is orbital, and yJ a screened hydrogenic n s  orbital, and minimize the energy w i t h o u t  

regard to lower states of the same symmetry. 
In  starting this calculation our thought was that  the function (1) is parti- 

cularly suitable for excited states since the outer orbital always contains the outer 
electron regardless of its identity; one never finds the excited electron inside the 
unexcited electron; and this peculiar physical aptness of (t) m i g h t  reflect itself 
mathematically by providing an accurate minimum in the energy corresponding 
to the ( t s n s ) l S  state. Our expectations were confirmed, as we show below. The 
minimum for the 21S State turned out to be a relative minimum. For the 31S and 
41S states absolute minima were found. 

Minimizing the energy in the neighborhood of a relative rather than an absolute 
minimum is not a new idea with us. Ho~A~ [10] has studied the 2~S state of 
helium and the K-state of neon by means of relative minimization, and recently 
BAovs [11] has reported extensive Hartree-Fock calculations on the X-ray states 
of noble:igas atoms. 
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Our orbitals are: 

(;aleulations and Results 

~ ( r )  = (2 - r) e-~/~ 

~a(r) = ( 3 -  2 r - + - ~ r 2 ) s  -r/~ 
/ \ 

~fl4(r) = ~ 4 -  3r + -fir -- ~ r  )e -r/a (3) 

and the wave function for the (lsns)aS state is 

T = ~(a/cr<) ~n(/cr>) �9 (4) 

Since our wave function has a discontinuous first derivative at h = r2, we calculate 
the kinetic energy as 

T(/c, = [(v< + v (v>  V.) ]IN (sa) 
where 

This avoids the problem of the domMn boundary discussed by  H~SC~tFELDEX and 
NAZA~OFF [12]. The potential energy is 

V(/c, cb) = dh &~ ~2 V'~ z z + / 2,r 
r l  ?'2 

Oo Co 

= ;r~drlfr~dr~2yJ~n( r<Z r>Z + + ) I N .  (6) 
0 0 

We assumed the validity of the virial theorem, since one can apparently lower (or 
at  least one will fail to raise) a root of a secular equation by  scaling the coordi- 
nates of a trial wave function. We have accomplished this by  minimizing 
-V~(t,a)/4T(i,a) with respect to a. The opt imum value of k is, of course, 
- V(l,a)[2T(i,a). The results for the 21S, 3xS, and 41S states arc given in Fig. t ,  2, 
and 3 and Tab. I. 

The most striking feature of Fig. i is the deep minimum at a = 0.3175. The 
corresponding energy is --2.2398 au, which is about  15% of the way down from 
the 21S energy to the ground state energy. We performed an auxiliary calculation 
which identifies this absolute minimum as a poor approximation of the ground 
state. 

We calculated the overlap of our 21S function with ttYLLnaAAS' 6-term ground 
state function [13] and P ~ : I N S '  l l - t e rm  212 function [ld], which he obtained by 
minimizing the second root of the secular equation. The overlap of HrLL~RAAS' 
i lS  function with ,our 21S function is 0.9267 at  a = 0.3175, and -0 .0244 a~ 
a -- i.7250. The overlap of P ~ K I ~ S '  21S with our 21S function is 0.0172 at  
a = 0.3175 and 0.9979 at  1.7250. The exfrema and nodes of the overlaps of the 
HYLL~AAS' and P ~ K ~ S '  functions with our 21S function are given in Tab. 2. 

The values of the scaled parameters  for the relative minimum are/ca = 1.9997 
and/C = t.1593, which are reasonable values for the 21S state. On the other hand, 
the absolute minimum occurs for the rather  unphysieal values /ca----- i.6282 and 
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k = 5A284. These results clearly identify the absolute minimum of curve A in 
Fig. i as corresponding to a poor approximation of the ground state, and the rela- 
tive minimum as a good approximation of the 21S state. 

a 
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Fig. 1. Energy and overlap results for 2zS state. Curve A is the energy for our wave function, B that for the 
Eckart-type wave function, ]~q. (7). The observed energy of the state is indicated. Curves H and P are the over- 
laps between our 2iS function with the ground-state Itylleraas function and t~erkins ' 2iS function, respectively 
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Fig. 2. Energy of the 3~S state resulting from our function (curve A) and from the Eckart4ype function (curve B) 
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W e  ascr ibe  no  p h y s i c a l  s ignif icance to  t h e  m a x i m u m  in  t h e  curve .  

Also  in  F ig .  I is t h e  e n e r g y  one  ob t a in s  f r o m  an  E c k a r t - t y p e  f u n c t i o n :  

~_l = q~(akrl) yJ~(kr~) -t- ~fz(akrl) q~(kr2) . 
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Fig. 3. Energy of the 41S state resulting from our function (curve A) and from the Eckart-type function (curve B) 

Table/1. Energies~ and parameters o /21S,  31S, and 41S states 

:Parameter Values Energy a 
State a ka k Calculated b Observed 

21S Eckart-type 2.t89 2.0147 0.920 
[Eq. (7)] 
This Work t.7250 t.9997 t.1593 
[Eq. (4)] 

3rS Eckart-type 2.188 2.004 0.916 
[Eq. (7)] 
This Work 1.8367 2.0005 1.0892 
[Eq. (4)] 

41S Eckart-type 2,150 2,002 0.931 
[Eq. (7)] 
This Work 1.8788 2.0004 t.0647 
[Eq. (4)] 

a In  atomic units. 
b ~igure in parentheses is the error. 

-2.1707 
-0.0247) -2.14600 
-2.139320 
+0.00668) 

-2.0686 
-0.0073) -2.06130 
-2.059102 
+0.00220) 

-2.0366 
-0.0030) -2.03361 
-2.O32653 
+0.00096) 

Table 2. Some o] the points in  the overlap curves o] Fig. 1 

Overlap with Overlap with 
a Hylleraas' function Perkins' function 

0.2515 0.9368 (maximum) 
0.2978 
0.3t75 0.9267 

1.6512 0.0000 
1.7250 -0.0244 
t.7333 

0.0000 
0.0172 

0.9979 
0.9980 (maximum) 
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I t  is seen t h a t  the  energy curve ac tua l ly  goes below the  observed  value  b y  a b o u t  
0.0247 au  a t  i t s  min imum.  

Figs.  2 and  3 show the  resul ts  for the  31S and  41S calculat ions.  These s ta tes  
exh ib i t ed  no mul t ip le  minima.  Resul t s  are summar ized  in  Tab.  t .  

Conclusions 

Rela t ive  min imiza t ion  of  the  energy wi thou t  benefi t  of  a w l i d  va r i a t iona l  
pr inciple  m a y  be made  to yie ld  reasonable  resul ts  p rov id ing  the  t r ia l  wave  func- 
t ion is sufficiently su i ted  to  the  s t ruc ture  of the  a t o m  in a given s ta te .  Caut ion in 
the  use of  th is  idea  is advisable ,  however ,  since the  ind iscr imina te  add i t i on  of 
fur ther  t e rms  to  the  t r im  wave funct ion  m a y  serve to  des t roy  i ts  su i tab i l i ty .  

Appendix 

All  the  in tegra ls  encounte red  in th is  work  are of  the  form 

I(a,b,c,d;i,],k,l ,m) = f f dr 1 d l :2e -ar<-br>-cr l -d r~r  i 
m 

i+l+p+l (a + d)q (] + k + m + 3 - p + q)! ] 
- -  ~ q! (Ct + b + c + d) J+k+m+a-~+q J + q=O 

+ 
(b + d) J+~+~+4-~ q=o q! (~ +--b +- / +-d)--'T~T~%;§ ~,  (8) 

where the  (2) benea th  the  sum over p means  p is increased b y  two in successive 
terms.  
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