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Wave functions for the 218, 318, and 418 states of helium are calculated using as trial wave
functions screened hydrogenic orbitals which have the coordinates r« and r~ as arguments.
Direct minimization of the energy expression for each state, without assuming orthogonality
to any lower state, gives quite reasonable results. In the case of the 215 state and no other, the
energy as a function of the variational parameters exhibits two minima, the deeper of which
is shown by overlap considerations to correspond to the ground state. Our results are compared
to those obtained with the Eckart-type screened hydrogenic wave functions.

218, 318, 418-Zustinde von He werden mit Variationsfunktionen berechnet, die aus
wasserstoffahnlichen Orbitalen aufgebaut sind, welche als Argumente 7 und 7~ enthalten. Die
Energieminimisierung wird vorgenommen, ohne Orthogonalitit auf den tieferen Zustdnden
zu beriicksichtigen, Nur im Falle der 21S-Funktion treten zwei relative Energieminima auf,
von denen das tiefere dem Grundzustand entspricht.

Les fonctions d’ondes des états 215, 318 et 418 de 'hélium sont calculées en utilisant comme
fonctions variationnelles des orbitales hydrogénoides & constante d’écran ayant les coordonnées
r< et r> comme arguments. Une minimisation directe de 1’énergie pour chaque état, sans
aucune contrainte d’orthogonalité & des états d’énergie inférieure, donne des résultats raison-
nables. Dans le cas de 218 seulement, 1’énergie présente deux minima en fonction des para-
métres variationnels; le plus bas des deux correspond, d’aprés des considérations de recouvre-
ment, & I'état fondamental. Nos résultats sont comparés & ceux obtenus avec des fonctions
d’onde hydrogénoides du type d’Eckart.

Introduction

One of the principal activities of quantum chemists in recent years has been
to seek simplifications in methods of calculating wave functions. Much of this
effort has been directed at the ground state of the helium atom, where the problem
is somehow to account for the correlated motions of the two electrons without
introducing prohibitive quantities of additional calculation. One of the more
ingenious suggestions, due to Skvorrsova, Suvaurov, and Eriveis [I] is to
express a trial ground state wave function as

Pty v) = p(r) y(rs) , 1)
where 7. and r< are the lesser and greater, respectively, of », and r,. Such a func-
tion will introduce radial correlation by allowing the inside electron to have a
different distribution than the outside electron. The idea was first used in a
calculation by SxypER and PARR [2], who approximated the functions ¢ and v as
screened exponentials:
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(P j— e~ar<
Y= e—br> (2)

The variationally determined parameters are @ = 1.8465 and b = 1.5103, which
give an energy of —2.8727 au, results which were later confirmed by Scuwartz
{3]. This energy is considerably more accurate than that obtained with a screened
exponential without correlation,

Y — -6 (1 +12)

(a=1.6875, E = — 2.8476) and is somewhat more accurate even than the Hartree-
Fock result, —2.8617. It is practically as good as the energy obtained by Ecrart
[4] who used a screened exponential wave function with radial correlation:

T: e~ ar1—bra -+ e—bri—-ar:

(o =1.1885, b = 2.1832, E = — 2.8757). The exact nonrelativistic energy of the
ground state is —2.9037 au.

Our interest here is in some of the helium excited states which belong to the
same symmetry classification as the ground state. The problem in caleulating the
energies of such states is to assure the existence of a variational prineiple which
guarantees lower bounds on calculated energies appropriate to the states of
interest. If one does not have such a bound, one’s calculated energy might be
seriously in error, and one’s wave function might bear no resemblance to the
(unknown) exact wave function. HYLLERAAS [5] observed a long time ago that the
ntt lowest root of the secular equation is an upper bound to the energy of the ntt
lowest state. EcRART [4] and ViNTI [6] orthogonalized excited state wave func-
tions to approximate lower state wave functions, thus assuring a proper varia-
tional principle, but at the same time, adding the inaccuracies of the ground state
wave function to those of the excited state. Various aspects of the problem are
still under investigation [7—9].

Our own approach is rather direct and springs from our desire to find reliable
yet simple theoretical methods which do not entail extensive and expensive
calculations. We use wave functions of the form (1), in which we make ¢ a screened
1s orbital, and v a screened hydrogenic ns orbital, and minimize the energy without
regard to lower states of the same symmetry.

In starting this calculation our thought was that the function (1) is parti-
cularly suitable for excited states since the outer orbital always contains the outer
electron regardless of its identity ; one never finds the excited electron inside the
unexcited electron; and this peculiar physical aptness of (1) might reflect itself
mathematically by providing an accurate minimum in the energy corresponding
to the (1sns)lS state. Our expectations were confirmed, as we show below. The
minimum for the 218 State turned out to be a relative minimum. For the 318 and
418 states absolute minima were found.

Minimizing the energy in the neighborhood of a relative rather than an absolute
minimum is not a new idea with us. Horax [10] has studied the 21§ state of
helium and the K-state of neon by means of relative minimization, and recently
Baaus [11] has reported extensive Hartree-Fock calculations on the X-ray states
of noble gas atoms.
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Calculations and Results

Our orbitals are:
pr) =e™
palr) = (2= 1) €712

wa(r) = <3 - 2r+ %r‘*‘) eT/3

wlr) = (4 R —fs—ﬂ) ot 3)
and the wave function for the (1sns)iS state is
¥ = p(akr) palkrs) . 4)

Since our wave function has a discontinuous first derivative at r, = r,, we caloulate
the kinetic energy as

T(k,a) = j j dty dty (V< 9292 + 02 (Vs pa)2lN (5a)
where

N= J‘j dr, dry g2yl . (6b)

This avoids the problem of the domain boundary discussed by HirRscHFELDER and
Nazarorr [12]. The potential energy is

Z Z 1
V(’C, (Z) = j‘j [l’f]_dfz(pz’(/)fb (-— ";1— — -;;' + —T:;)/ZV
T 5 T 2 9 Z Z 1
:J-'rldﬁjf’"zd’z‘l)z’/)n - — =+ —]|N. (6)
r< > >

0 0

We assumed the validity of the virial theorem, since one can apparently lower (or
at least one will fail to raise) a root of a secular equation by scaling the coordi-
nates of a trial wave function. We have accomplished this by minimizing
~V?3*1,a)/4T(1,a) with respect to a. The optimum value of & is, of course,
~V(1,0)/27(1,a). The results for the 218, 318, and 418 states are given in Fig. 1, 2,
and 3 and Tab. 1.

The most striking feature of Fig. 1 is the deep minimum at a = 0.3175. The
corresponding energy is —2.2398 au, which is about 159%, of the way down from
the 218 energy to the ground state energy. We performed an auxiliary calculation
which identifies this absolute minimum as a poor approximation of the ground
state.

We calculated the overlap of our 218 function with HYLLERAAS® 6-term ground
state function [13] and PERRINS’ 11-term 218 function [I4], which he obtained by
minjmizing the second root of the secular equation. The overlap of HyLLERAAS
118 function with our 218 function is 0.9267 at @ = 0.3175, and —0.0244 at
a = 1.7250. The overlap of Prrxins’ 21§ with our 21§ function is 0.0172 at
a = 0.3175 and 0.9979 at 1.7250. The extrema and nodes of the overlaps of the
Hyrrrraas’ and PErEINS’ functions with our 218 function are given in Tab. 2.

The values of the scaled parameters for the relative minimum are ka = 1.9997
and &k = 1.1593, which are reasonable values for the 21§ state. On the other hand,
the absolute minimum occurs for the rather unphysical values ka = 1.6282 and
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k = 5.1284. These results clearly identify the absolute minimum of curve 4 in
Fig. 1 as corresponding to a poor approximation of the ground state, and the rela-
tive minimum as a good approximation of the 218 state.
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Fig. 1. Energy and overlap results for 218 state. Curve 4 is the energy for our wave function, B that for the
Eckart-type wave function, Eq. (7). The observed energy of the state is indicated. Curves H and P are the over-
laps between our 218 function with the ground-state Hylleraas function and Perking’ 218 function, respectively
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Fig. 2. Bnergy of the 318 state resulting from our function (curve 4) and from the Eckart-type function (curve B)
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We ascribe no physical significance to the maximum in the curve.
Also in Fig. 1 is the energy one obtains from an Eckart-type function:
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Fig. 3. Energy of the 41 state resulting from our function (curve 4) and from the Eckart-type function (curve B)

Table 1. Energies® and parameters of 248, 318, and £18 states

Parameter Values Energy»
State @ ko, k Calculated® Obgerved
218 Eckart-type 2.189 2.0147 0.920 —-2.1707
[Bq. (7)] ( —0.0247) —2.14600
This Work 1.7250 1.9997 1.1593 -2.139320
[Eq. 4)] { +0.00668)
318 Eckart-type 2.188 2.004 0.916 —2.0686
[Eq. (7] ( —0.0073) -2.06130
This Work 1.8367 2.0005 1.0892 —2.059102
[Eq. (4)] ( +0.00220)
418 Eckart-type 2150 2.002 0.931 -2.0366
[Eq. (7)] ( —0.0030) -2.03361
This Work 1.8788 2.0004 1.0647 —~2.032653
[Eq. (4)] ( +0.00096)

= In atomic units.

® Figure in parentheses is the error.

Table 2. Some of the poinis in the overlap curves of Fig. 1

Overlap with
Hylleraas’ function  Perkins’ function

Overlap with

0.2515
0.2978
0.3175

1.6512
1.7250
1.7333

0.9368 (maximum)

0.9267

0.0000
—0.0244

0.0000
0.0172

0.9979
0.9980 (maximum)
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It is seen that the energy curve actually goes below the observed value by about
0.0247 au at its minimum.

Figs. 2 and 3 show the results for the 318 and 41§ calculations. These states
exhibited no multiple minima. Results are summarized in Tab. 1.

Conclusions

Relative minimization of the energy without benefit of a valid variational
principle may be made to yield reasonable results providing the trial wave func-
tion is sufficiently suited to the structure of the atom in a given state. Caution in
the use of this idea is advisable, however, since the indiscriminate addition of
further terms to the trial wave function may serve to destroy its suitability.

Appendix
All the integrals encountered in this work are of the form
Iab,cd;igklm) = jj v, dry e ar<=br>=cri~dr ¢i< 7-7'> ¥l

1672 "2 im0\ [ E+1+p+ W [G+E+m+3—p)! _
m+21(,2=)1 P (@ +d)i+i+p+2 (b +c)yi+k+m+s—p

__7'+P§+1(a+d)q G+hk+m+3—p+g)! "
=0 g! (@+b+c+dyi+k+m+a=p+q
(G+1I+m+3—pithintd=p b1 d)e G+ k+1+p+g)! }

(b +d)i+i+m+i—p =0 q! (@+b+c+d)ite+2+ptg

N (8)

where the (2) beneath the sum over p means p is increased by two in successive
terms.
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